HTTP and Its Evolution - HTTP/1.0, HTTP/1.1,
HTTP/2, HTTP/3

Muskula Rahul

Introduction to HTTP

The Hypertext Transfer Protocol (HTTP) is the foundation of any data exchange on the Web and a pro-
tocol used for transmitting hypertext requests and information between servers and browsers. HTTP is
an application layer protocol designed within the framework of the Internet protocol suite. It enables web
browsers to retrieve resources, such as HTML documents, images, and videos, from web servers. Over the
years, HT'TP has evolved to meet the demands of the ever-expanding and increasingly complex web.

HTTP/1.0 and HTTP/1.1

HTTP/1.0

HTTP/1.0 was officially introduced in 1996 as the first version to be widely adopted and standardized. Some
key features of HTTP /1.0 include:

Client Server

Request (HTTP 1.0)

v

Response (HTTP 1.0)

A

A new connection is opened for each request

Server closes the connection after sending response

Request 2 (HTTP 1.0)

v

Response 2 (HTTP 1.0)

A

A new connection is opened for each request

Server closes the connection after sending response

Client Server

Figure 1: Working Of HTTP/1.0



neuralnets.dev Muskula Rahul

e Simple Request/Response Model: HTTP/1.0 uses a straightforward request/response approach
where the client sends a request to the server, and the server sends back the requested data.

e Stateless Protocol: Each request from a client to a server is treated as an independent transaction
that is unrelated to any previous request. This statelessness simplifies the protocol but requires each
request to carry all necessary information, leading to inefficiency.

e Text-Based Communication: Requests and responses are communicated as plain text, making
them easy to construct and debug.

e Limited Persistent Connections: By default, HTTP/1.0 closes the TCP connection after each
request /response cycle. This behavior introduces significant overhead due to the cost of setting up and
tearing down connections.



https://neuralnets.dev

neuralnets.dev Muskula Rahul

HTTP/1.1
HTTP/1.1, released in 1997, addressed many limitations of HT'TP /1.0 and introduced several enhancements:

Client Server

Request (HTTP 1.1)

Response (HTTP 1.1)

Connection is kept alive after the response

Server keeps the connection open

Request 2 (HTTP 1.1)

Response 2 (HTTP 1.1)

Same connection is used for subsequent requests

Server keeps the connection open

Request 3 (HTTP 1.1)

Response 3 (HTTP 1.1)

Same connection is used for subsequent requests

Server keeps the connection open

Connection: close

Client signals to close the connection

Respanse 4 (HTTP 1.1)

Server closes the connection after sending the final response

Client Server

Figure 2: Working Of HTTP/1.1

e Persistent Connections: One of the most significant improvements in HTTP/1.1 is the use of per-
sistent connections, where a single TCP connection can be reused for multiple requests and responses.
This reduces latency and the overhead of establishing multiple connections.

e Chunked Transfer Encoding: HTTP/1.1 introduced chunked transfer encoding, allowing a server
to start sending a response before knowing its total size, which is beneficial for dynamically generated
content.

e More Efficient Caching: HTTP/1.1 includes more sophisticated caching mechanisms, such as the
Cache-Control header, which provides fine-grained control over caching policies.

e Additional Methods and Status Codes: HTTP/1.1 expanded the range of HT' TP methods (e.g.,
OPTIONS, PUT, DELETE) and status codes, providing more tools for developers to handle different
types of requests and responses.

e Host Header: The Host header allows multiple domains to be hosted on a single IP address, a critical
feature for the expansion of the web.



https://neuralnets.dev

neuralnets.dev Muskula Rahul

HTTP/2: A Major Overhaul

HTTP/2, standardized in 2015, brought significant improvements over HTTP /1.1, addressing performance
bottlenecks and inefficiencies. Key features of HTTP/2 include:

Client Server

Connection Preface

v

Settings Frame

F 9

Settings Frame

v

Connection setup

Headers Frame (Stream 1)

v

Data Frame (Stream 1)

Headers Frame (Stream 1)

A

Data Frame (Stream 1)

F 9

Multiplexed streams over a single connection

Headers Frame (Stream 3)

L J

Headers Frame (Stream 3)

A

Data Frame (Stream 3)

I 3

Streams are multiplexed and prioritized

RST_STREAM Frame (Stream 1)

\J

Streams can be canceled

Client Server

Figure 3: Working Of HTTP/2.0

e Binary Protocol: Unlike the text-based HTTP/1.x, HTTP/2 uses a binary framing layer, which is
more efficient to parse and less prone to errors.

e Multiplexing: HTTP/2 allows multiple requests and responses to be sent concurrently over a single
connection, eliminating the head-of-line blocking problem in HTTP/1.x where one request could block
others.

e Header Compression: HTTP/2 introduces HPACK, a header compression algorithm that reduces
the overhead caused by repetitive header data, improving performance.

e Server Push: HTTP/2 allows servers to push resources proactively to the client before the client
explicitly requests them, reducing latency and improving page load times.



https://neuralnets.dev

neuralnets.dev Muskula Rahul

e Stream Prioritization: Clients can prioritize streams, allowing more important resources to be
delivered first, which enhances the user experience.



https://neuralnets.dev

neuralnets.dev Muskula Rahul

HTTP/3: The Next Generation

HTTP/3, currently in the process of standardization, is designed to address the limitations of HTTP/2,
particularly related to the transport layer. HTTP/3 is based on the QUIC protocol, developed by Google,
which operates over UDP rather than TCP. Key features of HT'TP/3 include:

Client Server

Initial Packet

v

Initial Packet

A

Connection setup using QUIC

STREAM Frame (Stream 1)

v

STREAM Frame (Stream 1)

v

STREAM Frame (Stream 1)

A

STREAM Frame (Stream 1)

I Y

Multiplexed streams over a single connection

STREAM Frame (Stream 3)

v

STREAM Frame (Stream 3)

A

STREAM Frame (Stream 3)

r'y

Streams are multiplexed and prioritized

RESET_STREAM Frame (Stream 1)

v

Streams can be canceled

Client Server

Figure 4: Working Of HTTP/3.0

QUIC Protocol: By using QUIC, HTTP/3 benefits from features such as faster connection es-
tablishment (0-RTT and 1-RTT handshakes), improved congestion control, and multiplexing without
head-of-line blocking at the transport layer.

e Improved Security: QUIC integrates TLS 1.3, providing enhanced security and privacy protections.

e Connection Migration: QUIC supports connection migration, allowing a session to continue seam-
lessly if the client’s IP address changes, such as when switching from Wi-Fi to mobile data.

e Reduced Latency: By operating over UDP and using features like 0-RTT, HTTP/3 can reduce
latency and improve page load times, especially in environments with high packet loss or latency.



https://neuralnets.dev

neuralnets.dev Muskula Rahul

Conclusion

HTTP has come a long way since its inception, evolving from the simple and inefficient HTTP/1.0 to
the advanced and highly efficient HTTP/3. Each version has built upon the strengths and addressed the
weaknesses of its predecessors, ensuring that the protocol remains robust and capable of meeting the demands
of modern web applications. As the web continues to grow and evolve, HTTP will undoubtedly continue to
develop, providing a solid foundation for future innovations.



https://neuralnets.dev

